 Registration time
 200716
 Last login
 2008128
 Online time
 1144 Hour
 Reading permission
 90
 Credits
 23614
 Post
 7092
 Digest
 0
 UID
 122842

Mathematical Activity in the Vedic Period
In the Vedic period, records of mathematical activity are mostly to be found in Vedic texts associated with ritual activities. However, as in many other early agricultural civilizations, the study of arithmetic and geometry was also impelled by secular considerations. Thus, to some extent early mathematical developments in India mirrored the developments in Egypt, Babylon and China . The system of land grants and agricultural tax assessments required accurate measurement of cultivated areas. As land was redistributed or consolidated, problems of mensuration came up that required solutions. In order to ensure that all cultivators had equivalent amounts of irrigated and nonirrigated lands and tracts of equivalent fertility  individual farmers in a village often had their holdings broken up in several parcels to ensure fairness. Since plots could not all be of the same shape  local administrators were required to convert rectangular plots or triangular plots to squares of equivalent sizes and so on. Tax assessments were based on fixed proportions of annual or seasonal crop incomes, but could be adjusted upwards or downwards based on a variety of factors. This meant that an understanding of geometry and arithmetic was virtually essential for revenue administrators. Mathematics was thus brought into the service of both the secular and the ritual domains.
Arithmetic operations (Ganit) such as addition, subtraction, multiplication, fractions, squares, cubes and roots are enumerated in the Narad Vishnu Purana attributed to Ved Vyas (pre1000 BC). Examples of geometric knowledge (rekhaganit) are to be found in the SulvaSutras of Baudhayana (800 BC) and Apasthmaba (600 BC) which describe techniques for the construction of ritual altars in use during the Vedic era. It is likely that these texts tapped geometric knowledge that may have been acquired much earlier, possibly in the Harappan period. Baudhayana's Sutra displays an understanding of basic geometric shapes and techniques of converting one geometric shape (such as a rectangle) to another of equivalent (or multiple, or fractional) area (such as a square). While some of the formulations are approximations, others are accurate and reveal a certain degree of practical ingenuity as well as some theoretical understanding of basic geometric principles. Modern methods of multiplication and addition probably emerged from the techniques described in the SulvaSutras.
Pythagoras  the Greek mathematician and philosopher who lived in the 6th C B.C was familiar with the Upanishads and learnt his basic geometry from the Sulva Sutras. An early statement of what is commonly known as the Pythagoras theorem is to be found in Baudhayana's Sutra: The chord which is stretched across the diagonal of a square produces an area of double the size. A similar observation pertaining to oblongs is also noted. His Sutra also contains geometric solutions of a linear equation in a single unknown. Examples of quadratic equations also appear. Apasthamba's sutra (an expansion of Baudhayana's with several original contributions) provides a value for the square root of 2 that is accurate to the fifth decimal place. Apasthamba also looked at the problems of squaring a circle, dividing a segment into seven equal parts, and a solution to the general linear equation. Jain texts from the 6th C BC such as the Surya Pragyapti describe ellipses.
Modernday commentators are divided on how some of the results were generated. Some believe that these results came about through hit and trial  as rules of thumb, or as generalizations of observed examples. Others believe that once the scientific method came to be formalized in the NyayaSutras  proofs for such results must have been provided, but these have either been lost or destroyed, or else were transmitted orally through the Gurukul system, and only the final results were tabulated in the texts. In any case, the study of Ganit i.e mathematics was given considerable importance in the Vedic period. The Vedang Jyotish (1000 BC) includes the statement: "Just as the feathers of a peacock and the jewelstone of a snake are placed at the highest point of the body (at the forehead), similarly, the position of Ganit is the highest amongst all branches of the Vedas and the Shastras."
(Many centuries later, Jain mathematician from Mysore, Mahaviracharya further emphasized the importance of mathematics: "Whatever object exists in this moving and nonmoving world, cannot be understood without the base of Ganit (i.e. mathematics)".) 
